

www.**tech-i**.us

ABOUT OUR COMPANY

TECH-i Corp is a dynamic industrial group specializing in **mechanical production** and service at the companies.

The management has **30 years of experience** in the industrial market as oil&gas-automotive-hydropower-mechanical-agriculture and HVAC and more.

TECH-i carried out an **intensive research program**, which, combined with considerable investments, have enabled it to develop the state-of-the-art technologies currently adopted on the production lines around the world with **warehouse and office in New Jersey**.

From 1986 the management started a **collaboration in production and service wide-scale marketing of different products** as: control devices for fluids, o-ring, lip seal, flange seat, pipe for gas and water, heating exchange, bushing, bearings, cam follower, rod end, bolt, and more.

SLIDING BEARING OR BUSHING

www.**tech-i**.us

HiT-316 Self Lubricated Sliding Bearings

Spe	rage analyses of the mcial Surface Treatmentritex ML"Stainless Steel (Aisi 3 $16 \div 18 \%$ $10 \div 13 \%$ $= 2 \div 2,5 \%$ 1% Max $= 2 \%$ Max $0,060 \%$ Max $0,045 \%$ Max $0,030 \%$ Maxtemperaturefriction factor	t 15 μm 316) 0,50 ÷	2,70 mm ling on the Dimensions
SaceSpec "DuShell $Cr =$ Ni = Mo = Si = $Mn =$ C = P = 	cial Surface Treatmen iritex ML'' Stainless Steel (Aisi $2^{16 \div 18\%}_{10 \div 13\%}$ = 2 ÷ 2,5 % 1 % Max = 2 % Max 0,060 % Max 0,045 % Max 0,030 % Max temperature friction factor	t 15 μm 316) 0,50 ÷ (Depend	(Min) 2,70 mm ling on the Dimensions
SaceSpec "DuShell $Cr =$ Ni = Mo = Si = $Mn =$ C = P = S =gh load capacity in low f lubricating w Static and Dynamic f	cial Surface Treatmen iritex ML'' Stainless Steel (Aisi $2^{16 \div 18\%}_{10 \div 13\%}$ = 2 ÷ 2,5 % 1 % Max = 2 % Max 0,060 % Max 0,045 % Max 0,030 % Max temperature friction factor	t 15 μm 316) 0,50 ÷ (Depend	(Min) 2,70 mm ling on the Dimensions
Shell Cr = Ni = Mo = Si = Mn = C = P = S = gh load capacity in low f lubricating w Static and Dynamic f	Stainless Steel (Aisi 3 16 ÷ 18 % 10 ÷ 13 % = 2 ÷ 2,5 % 1 % Max = 2 % Max 0,060 % Max 0,045 % Max 0,030 % Max temperature Friction factor	(Depend	ling on the Dimensions
f lubricating w Static and Dynamic f	riction factor		
f lubricating w Static and Dynamic f	riction factor		
sy to mount gh chemical inertia			
le products made in <u><i>Hi</i></u> ers and strips on custom aring and washers with ecial part on customer d	ner drawing. <u>HiT-316</u> dimensions on reques	material can also b	
pecific Load	Static	200 N/mm ²	
		100 N/mm ²	
	•	0,5 m/s	(100 fpm
	•		
			(-324°F
•			(+840°F
			Alloy Steel
S S C T S	Specific Load Specific Load Sliding Speed ctor Cemperature Temperature sted) hness (Suggested)	Specific Load Dynamic Sliding Speed Dry ctor Dry Cemperature t Femperature t sted)	Specific LoadDynamic 100 N/mm^2 Sliding SpeedDry $0,5 \text{ m/s}$ ctorDry $0,07 \div 0,13$ Temperaturet $-198 \ ^\circ\text{C}$ Temperaturet $+450 \ ^\circ\text{C}$ sted)Chromium-Platedhness (Suggested)Ra $0,8$

Pg 01 of 02

HiT-625 Self Lubricated Sliding Bearings

Description:

<u>*HiT-625*</u> identify a new generation of Sliding Bearings dedicated at high temperature. This bearing can be used from -190° C to $+600^{\circ}$ C. Made in Inconel 625 with a special coating treatment. With this material we obtained Plain Sliding Bearings, Washers and special parts based on customer drawings.

	Layer	Average a	inalyses of the ma	terial Thickness a	of layer
	Sliding Surface	Special St Treatmen		15 µm (Mii	n)
	Supporting Shell	C = $Mn =$ $Cr =$ $Mo =$ $Co =$ $Ta + Nb =$ $Ni =$	Inconel 625 0,10% Max 0,05% Max 20 ÷ 23 % 8 ÷ 10 % 1% Max 3.15 ÷ 4.15 % Resto	0,50 ÷ 2,70 (Depending or Dimensions of	n the
Characteristics:	Self lubrica	ating	h temperature friction factor		
	Minimum vEasy to moHigh chemi	unt	llent life services		
Available Products:	 The available products made in <u><i>HiT-625</i></u> are the Plain Bearings (Bush) ISO 3547 (DI 1494), the thrust washers and the strips on customer drawing. The material <u><i>HiT-625</i></u> also be manufactured in other different items: Bearing and washers with dimensions on request Special part on customer drawing. 				
			C	200 N/mm ²	
Technical Data:	Maximum Specific I		Static		
Technical Data:	Maximum Specific I	Load	Dynamic	100 N/mm ²	
Technical Data:	Maximum Specific I Maximum Sliding S	Load	Dynamic Dry	100 N/mm² 0,5 m/s	(100 fpm)
Technical Data:	Maximum Specific I	Load	Dynamic	100 N/mm ² 0,5 m/s 0,07 ÷ 0,13	(100 fpm)
Technical Data:	Maximum Specific I Maximum Sliding S	Load peed	Dynamic Dry	100 N/mm² 0,5 m/s	(100 fpm) (-310°F)
Technical Data:	Maximum Specific I Maximum Sliding S Friction Factor	Load peed ure	Dynamic Dry Dry	100 N/mm ² 0,5 m/s 0,07 ÷ 0,13	
Technical Data:	Maximum Specific l Maximum Sliding S Friction Factor Minimum Temperat	Load peed ure	Dynamic Dry Dry t	100 N/mm ² 0,5 m/s 0,07 ÷ 0,13 -190 °C	(-310°F) (+1100°F)

The special treatment is resistant to all the oils, solvent, petrol and alcohol, and can stand alkaline and acid solutions.

SS316+PTFE

Self Lubricated Sliding Bearings

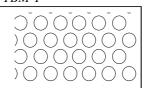
Description:

The self lubricated <u>SS316+PTFE</u> material has been developed to obtain a material with good capacity of load and a maximum resistance to the corrosion. The Sliding layer in PTFE is applied with a special treatment and technique directly on the Stainless Steel. Study to work in static and semi static application, where a very high resistance to chemical acid, alcohol aggressions and oxidation is needed. His best performance is given on closed ambient, like valves that are difficult to be opened for maintenance. For production reasons the sliding surface of the bearing is black, but can be also supplied in different colours, usually in black.

Structure of the composite material:

Layer	Material	Thickness of layer
Sliding Surface	PTFE	20 μm (Aprox)
Supporting Shell	Stainless Steel (Aisi 316)	0,50 ÷ 2,90 mm
	$Cr = 16 \div 18 \%$	(Depending on the Dimensions of
	$Ni = 10 \div 13 \%$	Bearing).
	$Mo = 2 \div 2,5 \%$	
	Si = 1 % Max	
	Mn = 2 % Max	
	C = 0,060 % Max	
	P = 0,045 % Max	
	S = 0.030 % Max	

Characteristics:	 Good load capacity 						
	• Self lubricating						
	Low Static and Dynamic friction factor						
	Minimum wear and exce						
	• Easy to mount						
	High chemical inertia an	d good compatibil	ity with fluids				
	Small overall dimension		2				
	• High resistance to corros	sion					
	• Wide range of service te						
Available Products:	The available products made in <u>S</u> 1494), thrust washers and strips of also be manufactured in other dif • Bush and washers with o	on customer drawir ferent items:	ng. The <u>SS316+PTFE</u>				
	 Special part on customer 	-	iest				
Technical Data:	Special part on customer	r drawing.	100 N/mm ²				
Technical Data:	Special part on customer Maximum Specific Load	r drawing. Static					
Technical Data:	Special part on customer	r drawing.	100 N/mm ²	(100 fpm)			
Technical Data:	Special part on customer Maximum Specific Load Maximum Specific Load	r drawing. Static Dynamic	100 N/mm ² 4 N/mm ²	(100 fpm)			
Technical Data:	Special part on customer Maximum Specific Load Maximum Specific Load Maximum Sliding Speed	r drawing. Static Dynamic Dry	100 N/mm² 4 N/mm² 0,5 m/s	(100 fpm) (-310°F)			
Technical Data:	Special part on customer Maximum Specific Load Maximum Specific Load Maximum Sliding Speed Friction Factor	r drawing. Static Dynamic Dry Dry Dry	100 N/mm ² 4 N/mm ² 0,5 m/s < 0,10				
Technical Data:	Special part on customer Maximum Specific Load Maximum Specific Load Maximum Sliding Speed Friction Factor Minimum Temperature	r drawing. Static Dynamic Dry Dry t	100 N/mm ² 4 N/mm ² 0,5 m/s < 0,10 -190 °C	(-310°F) (+500°F)			



TBM PRE-LUBRICATED SLIDING BEARINGS

Description:	support over lined by a sec surface is the sliding side of for all the applications whe required. This material is produced i The sintered layer is genera with steel. Standard bronze	ntire sliding bearing family constitut ond layer of thermally sintered brow of the bearings. With oil or grease lu- ere high strength, minimum dimension n according to ISO 3547-4 Key S6 ally of lead bronze (CuSnPb10) wh thickness is 0,30 mm (nominal) w or extra thickness bearings (<i>TBM-4</i> a	nze. The lubricated bronze abrication these bearings are idea ions and low friction factor are Designation CuPb10Sn10. ich is ideal for sliding couplings hich may be increased to 0,40
			Thisky and of lawar
	Layer Sliding layer	Average analyses of the material Sinter Bronze (UNI ISO 4383) Cu Rest Sn 9 ÷ 11 % Pb 8 ÷ 11 %	Thickness of layer 200 ÷ 350 μm Std. (Special = Depending on the Drw.)
	Connecting layer	Cu	1 ÷ 3 μm
	Supporting shell	DC 04 (EN 10139) C = 0,080 Max Mn = 0,40 Max P = 0,03 Max S = 0,08	0,50 ÷ 2,70 mm (Depending on Dim. of the Bearing)
	External Protective Layer	Cu	$1 \div 3 \mu m$ (Protective Oil on the chamfers)
Characteristics:	finishing and from the thick $\underline{TBM-1}$ = sliding surface w without constant lubricatio lubricant. $\underline{TBM-3}$ = plain b in this sense, according to 6 machined to obtain lubrica $\underline{TBM-4}$ = plain surface with increased bronze thicknesss machining; typical case is the Main items for all the \underline{TBM} flanged cylindrical bushing and a wide range of special \underline{TBM} sliding bearings offer • easy installation a • high load capacity • very compact dim • high thermal cond • wide range of won	h <u>0,10÷0,15 mm extra nominal thic</u> which is requested for all the appli the "in seat" machining of bushings grange are the cylindrical bushings is, metric and imperial; there are als litems to customer drawings. many advantages, including the fo nd maintenance ensions luctibility king temperature of standard bushings	fications are the following: dedicated to applications and progressively release the constant lubrication is foreseen, surface can be stamped or <u>ekness</u> of bronze layer, it has an cations with "in seat" final for close tolerance alignment. ISO 3547 (DIN 1494) and the so thrust washers, support strips

Sliding Surface:TBM sliding bearings must always be used with lubrication. For the applications where the
lubrication can only be periodic grease must be adopted. Where the lubrication can be
continuous a lubricant oil can be chosen. The lubricant pockets and channel grooves reduce
the working surface so the loading capabilities of the TBM bearings. Top performances are
obtained with TBM-3 and TBM-4 having plain surface; with these it is possible to reach the
hydrodynamic running at high load factor (Speed x Load). TBM standard working surfaces are
the following :

coupling service life.

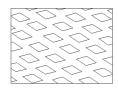
ТВМ-3 а	& 4	

The presence of the pockets reduces the working surfaces by the following percentages :

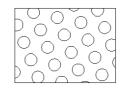
TBM-1 SPHERICAL CAP POCKETS 21% reduction

• <u>*TBM-3 & 4*</u> the reduction, with channel grooves, must be calculated case by case. <u>*TBM-1*</u> with the spherical pockets ensure an optimum lubricant release and it can be used with oil and grease. We can offer <u>*TBM*</u> bushings and all other sliding bearing types with different lubricant pockets and channel grooves according to customer drawing.

Design Data: The design with the *TBM* bearings must consider the sliding speed, the type of lubrication, the hardness and the roughness of the counter pieces; after that the design data are the followings: Maximum Work Load Static 310 N/mm² Maximum Work Load Dynamic 150 N/mm² Maximum PV Factor (with oil or grease) 2,7 N/mm² · m/s Maximum Speed 2,5 m/s (500 fpm) (with Oil or Grease) Coefficient of friction $0.04 \div 0.15$ Maximum Temperature +250°C $(500^{\circ}F)$ t Minimum Temperature -40°C $(-40^{\circ}F)$ t Hardness (Bronze Side) HB 2,5/62,5/10 80 - 100 $0,6 \div 2 \ \mu m$ Roughness Ra Thermal Conductibility 46 W/mK λ For the frequent case where a TBM cylindrical bushing is to apply, it's important to remember that the working area on which to calculate the Specific Load is the internal projected surface (d·L). This surface must than be reduced by the extension of the lubricant grooves. Lubrication: Lubrication is compulsory for the correct use of TBM sliding bearings, lubrication is also useful to prevent corrosion on the counter pieces. When the coupling is exposed to atmosphere or to aggressive environments it's advisable to adopt lubricant seals which always improve


TBR-10/80 Pre-Lubricated Sliding Bearings

Description:	according to UNI EN with steel. This chara surface obtaining lub lubricant film betwee Central items of <u>TBR</u> in a difference wall th used like thrust washe of special items to cu	1652 (CuSn8P) which is parti cteristic is highly improved by ricant pockets, holes or channe n the pieces. <u>10/80</u> range are the cylindrica icknesses. <u>TBR-10/80</u> series in ers, sliding strips and in addition stomer's drawings.	bearings. Bronze specification is cularly suitable for sliding couplings stamping and/or machine working the ls to distribute and maintain the l bushings (ISO 3547), plain or flanged; neludes all the sliding bearings normally on to these we can offer a wide variety
	Structure of the mat		
	Layer	Average analyses of the mat	
	Supporting shell Sliding Layer	CuSn8 / CuSn6	$0,50 \div 3,00 \text{ mm}$ (Depending on Dim. of the Bearing)
Characteristics:	 <u>TBR-10/80</u> sliding bearings offer many advantages, including the following : high load capacity very compact dimensions high chemical resistance to aggressive environments high thermal conductibility wide range of working temperature easy installation and maintenance wide availability of standard bushings possibility for special items 		
Design Data:	load, the sliding spec roughness of the cour are listed here below. • Hardness HI • Roughness F • Thermal con • Coefficient o • Service Tem • Maximum S • Maximum W	ed, the type and the intensity nter piece surface; after that the B 2,5/ 62,5/10 Ra ductibility of thermal expansion of friction (with oil or grease)	the must know the maximum applicable of the lubrication, the hardness and the ne mechanical characteristics to consider 110 - 140 $< 0.5 \ \mu\text{m}$ $60 \ \text{W/m} \cdot \text{K}$ $20 \ x \ 10^{-5/\circ}\text{C}$ $0.06 \div 0.17$ -40°C to 150°C (-40°F to 300°F) $2.5 \ \text{m/s}$ (500 fpm) $2.7 \ \text{N/mm}^2 \cdot \text{m/s}$ $150 \ \text{N/mm}^2$
Sliding Surface:	where the lubrication lubrication can be lubricant involves a adopted the bearing	n can just be periodic grea continuous a lubricant oil c different type of <u>TBR-10/80</u>	I with lubrication. For the applications se must be adopted, while where the can be chosen. The different type of bearing sliding surface. When grease is sted with lubricant pockets, while with channels.


Lubrication:	Lubrication is strictly needed for the correct use is also useful to prevent corrosion on the coun to atmosphere or to aggressive environments which always improve coupling service life.	ter pieces. When the coupling is exposed
Mounting:	 Base procedure for bushings mounting is to for suggestion to follow: Machine a 1 mm seat lead - in with an a Clean and burr the pieces to couple Lubricate external bushing surface before Check alignment between seat and bush When 2 bushing are needed their junction Use a proper sized mandrel when possibility Mounting can be done with hydraulic or 	ngle of 20° (±5°) re mounting ing centre lines ons must be aligned ile. rechanical tools.
	The mounting force (\mathbf{F}) in Newton is shown in the	e attached table.
	Bushing Nominal Thickness 0,50 ÷ 1,00 mm	F = 300 x L (Length of bush)
	Bushing Nominal Thickness 1,00 ÷ 1,50 mm	F = 500 x L (Length of bush)
	Bushing Nominal Thickness 1,50 ÷ 2,00 mm	F = 700 x L (Length of bush)
	Bushing Nominal Thickness 2,00 ÷ 2,50 mm	F = 900 x L (Length of bush)

If the bush is secured by using an adhesive, care must be taken to ensure that good quality adhesive are used and that it does not get onto the sliding surface.

Sliding Surface:

TBR-10 (Lozenge Pockets)

TBR-80 (Through Holes)

TBS-500 Self Lubricated Sliding Bearings

Description:	<u><i>TBS-500</i></u> is a material suitable for heavy loads at low sliding speed, solid lubricant is provided by Graphite with additive, which is inserted into the bronze structure of the bearings. The base material are CuZn25Al 5. The available items in this material are the cylindrical and flanged bush, washers, strips, and special part on customer requests.				
	Material Structure:				
	Supporting Shell:	$\begin{array}{c} Cu\ Zn\ 25\ Al\ 5\\ Cu = Over\ 60\%\\ Fe = 2.0 \div 4.0\ \%\\ Al = 5.0 \div 7.5\ \%\\ Mn = 2.5 \div 5.0\ \%\\ Sn = 0.5\ \%\\ Pb = 0.2\ \%\\ Si = 0.1\ \%\\ Zn = Rest \end{array}$			
	Lubricant:	Grafhite + additiv	Grafhite + additive		
Characteristics:	 Possibility to Good chemics Wide range o Flameproof Easy to mound 	ng under dry operatio use in presence of flu al inertia to corrosive f operating temperatu t s widely available	iids ager	nts	
Properties:	Maximum Specific Lo Maximum PxV Factor Maximum Sliding Spe Maximum Sliding Spe Temperature Tensile strength Elongation Hardness Friction Factor	ed Dry	v	100 N/mm ² 3.8 N/mm ² · m/s 0,4 m/s 5 m/s +300° C 770 12 230 <0.16	

TFX-316 Self Lubricated Sliding Bearings

Description:	PTFE FabriSpecial Adl	Dry Sliding Bearing) <u><i>TFX-316</i></u> is a the formula of the special fibres of 0,40 mm this nesive 60μ m thickness. eel (AISI 316 L) from 0,50 to 2,70 m	ckness.
	Structure of the co	nposite material:	
	Layer	Average analyses of the material	Thickness of layer
	Sliding layer	PTFE Fabric	0,40 mm
	Intermediate layer	Special Adhesive	60µm
	Supporting shell	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0,50 ÷ 2,70 mm (Depending on Dimension of the Bearing)
Characteristics:	resistance of the Stai performance given v • Working su	ombines in the best way the mechani inless Steel (AISI 316 L), with PTFE vithout lubricants are the following: rface acceptable specific static press rface acceptable specific dynamic pr	low friction characteristic. The ure until 400 N/mm ²
	•	sliding speed: 0,5 m/s	(100 fpm)
	 Working te Friction fac High chemi resist to the hydrocarbo 	mperature from: -180° C to $+260^{\circ}$ C tor from 0,03 \div 0,15 cal resistance to industrial fluids and oils, sulphuric acid, solvents, idross ins and alcohol. The fluid that can darric acid. In case of uses of other kind	$(-292 ^{\circ}F \ to +500 ^{\circ}F)$ gases. The sliding layer can id of ammonium and sodium, mage the material are solvent
Special Items:	technical items, betw Bushings an	and thrust washers the <u><i>TFX-316</i></u> can yeen them we indicate the followings and washers with request dimension as at customer's drawing.	

TFX-625 Self Lubricated Sliding Bearings

Description:	 Multilayer bushing (dry Sliding Bearings) <u>TFX-625</u> is a three layer composite product. PTFE Fabric with special fibres of 0,40 mm thickness. Special Adhesive 60µm thickness. Inconel-625 from 0,50 to 2,70 mm thick depending on the size of the bush. Structure of the composite material:				
	Sliding layer	PTFE Fabric	0,40 mm		
	Intermediate layer	Special Adhesive	60µm		
	Supporting shell	Inconel-625 C = 0,10 % Max Mn = 0,05 % Max $Cr = 20 \div 23 \%$ Ni = Rest $Mo = 8 \div 10 \%$ Cobalt = 1 % Max Tentalum + Niobium = 3,15 ÷ 4,15 %	0,50 ÷ 2,70 mm (Depending on Dim. of the Bearing)		
Characteristics:	resistance of Inconel- without lubricants are Working surf Working surf Maximum sli Working tem Friction facto High chemic to the oils, su hydrocarbons	face acceptable specific static pressure face acceptable specific dynamic press iding speed: $0,5 \text{ m/s}$ perature from: -180°C to $+260^{\circ}\text{C}$ or from $0,03 \div 0,15$ al resistance to industrial fluids and ga lphuric acid, solvents, idrossid of amn s and alcohol. The fluid that can damag d. In case of uses of other kind of fluid	stic. The performance given until 400 N/mm ² ure until 180 N/mm ² (100 fpm) $(-292 \circ F to +500 \circ F)$ ses. The sliding layer can resist nonium and sodium, ge the material are solvent and		
Special Items:	technical items, betwe Bushings and	and thrust washers the <u><i>TFX-625</i></u> can be een them we indicate the followings: I washers with dimension on request at customer's drawing.	supplied as many other		

TFX-C Self Lubricated Sliding Bearings

Description:	product. • PTFE Fabric • Special Adh	Dry Sliding Bearings) <u><i>TFX-C</i></u> bearin c with special fibres of 0,40 mm thic lesive 60μ m thickness. n steel from 0,50 to 2,70 mm thick	kness.
	Structure of the con	nposite material:	
	Layer	Average analyses of the material	Thickness of layer
	Sliding layer	PTFE Fabric	0,40 mm
	Intermediate layer	Special Adhesive	60µm
	Supporting shell	Low Carbon Steel (EN 10139) C = 0,080 Max Mn = 0,40 Max P = 0,03 Max S = 0,03 Max	0,50 ÷ 2,70 mm (Depending on Dim. of the Bearing)
	Protective Layer	Sn or Zn	$2 \div 8 \ \mu m$
Characteristics:	low friction character • Working sur • Working sur • Maximum s • Working ter • Friction fact • High chemic resist to oils hydrocarbon and chloridr	abines in the best way the mechanical ristic. The performance given without rface acceptable specific static press rface acceptable specific dynamic pr liding speed: $0,5 \text{ m/s}$ mperature from: -100°C to $+260^{\circ}$ C for from $0,03 \div 0,15$ cal resistance to industrial fluids and sulphuric acid, solvents, idrossid of hs and alcohol. The fluid that can dar ic acid. In case of use in presence of to make previous test.	at lubricants are the following: ure until 300 N/mm ² essure until 180 N/mm ² (100 fpm) (-148°F a +500°F) gases. The sliding layer can f ammonium and sodium, mage the material are solvent
Special Items:	technical items, betw Bushings an	and thrust washers the <u><i>TFX-C</i></u> can b een them we indicate the followings id washers with request dimensions as at customer's drawing.	

TM-G Polymer Sliding Bearings

Description:	<u><i>TM-G</i></u> is a thermoplastic material with a wire of fibers mixed with solid lubricants. The product shows a good wear proofing feature, the solid lubricants reduces the friction factor and form, by micro abrasion, an excellent sliding surface with the counter-piece. There are several applications, ranging from office supplies, to medical equipment, pneumatic cylinders, hinges, rudder bars, etc. The <u><i>TM-G</i></u> series includes cylindrical and flanged bearings as well as washers, and special parts are available on demand.
Characteristics:	 Dry self-lubrications Low friction factor, either static or dynamic Minimized wear and excellent service life Good chemical strength Ideal for rotary, swinging or linear movements Good abrasion resistance Easy to assembly Wide range of standard items available Special items on demand

General Properties

Density	DIN 53479 ASTM D792	g/cm ³	1,44
Max moisture absorption in water at 24h (23°C)	ISO 62	%	0,70
Coefficient of sliding friction dynamic			0,08 - 0,20
P x V Value	(dry)	N/mm ² · m/s	0,42
Colour			Dark Grey

Mechanical properties

			r
Tensile strength (23 °C)	ISO 527	N/mm ²	142
Modulus of elasticity (23 °C)	ISO 527 R	N/mm ²	7900
Elongation at break (23 °C)	ISO 527	%	3,60
Izod – Impact strength (notched) (23 °C)	ASTM D256-A	J/m	88
Charpy – Impact strength (unnotched) (23 °C)	ISO 179-1	KJ/m ²	74
Charpy – Impact strength (notched) (23 °C)	ISO 179-1	KJ/m ²	7,8
Max surface speed (rotating)		m/s	1
Max surface speed (linear)		m/s	4,0
Max static surface pressure		N/mm ²	80

Physical and thermal properties

Max long term application temperature		°C	+ 130
Min long term application temperature		°C	- 40
Coefficient of thermal expansion $(+30^{\circ}C + 100^{\circ}C)$	DIN 53752	$K^{-1} \cdot 10^{-5}$	4

Electrical properties

Specific volume resistance	DIN 53482	Ω cm	>10 ¹³
Surface resistance	DIN 53482	Ω	$>10^{12}$

Note: Information present in this sheet is considered reliable, but conditions and methods of use, which are beyond our control, may modify result. The information and data contained in this data sheet are the result of lengthy and detailed research, however TECH-i Inc cannot be held responsible for any incorrect or incomplete data. Owing to the constant development of the products, we reserves the right to make changes to the products without prior notice.

TU Self Lubricated Sliding Bearing

Description:	 a three layer composit PTFE Modificon complying with the porous bronz Low carbon so the bush. The point the bush the bus	ed antifriction surface layer $0,01 \div 0,01$ ith the European Parliament's "ELV" of e layer $0,20 \div 0,35$ mm thickness. steel supporting strip $0,50$ to $2,70$ mm to e steel is plated for corrosion protection	5 mm thick (without lead, lirective 2000/53/Ec). thick depending on the size of
	Structure of the com		1
	Layer	Average analyses of the material	Thickness of layer
	Sliding layer	PTFE Modified	10 μm (Minimum)
	Intermediate layer	CuSn11 Sintered	$200 \div 350 \ \mu m \ (Average \ Peak)$
the section	Connecting layer	Cu	$1 \div 3 \ \mu m$
	Supporting shell	Low Carbon Steel (EN 10139) C = 0,080 Max Mn = 0,40 Max P = 0,03 Max S = 0,03 Max	$0,50 \div 2,70 \text{ mm}$ (Depending on Dim. of the Bearing)
	Protective Layer	Sn or Zn	$2 \div 8 \mu m$
	 Working surf Maximum sli Maximum sli Working tem Friction facto Clear fluids li Friction facto 	ace acceptable specific static pressure: ace acceptable specific dynamic pressure ding speed (dry): 2,5 m/s ding speed (oil): 10 m/s perature from: -200°C to +280° C or from 0,03 to 0,20 like oil or water permit higher values for or not affected by "stick - slip" effect al resistance to industrial fluids and gas	are: Max 140 N/mm ² (500 fpm) (2000 fpm) (-328°F to $+536$ °F) or speed and specific pressure
Special Items:	 Apart from bushings ISO 3547 (DIN 1494) and thrust washers, the <u>TU</u> can be supplied as many other technical items, between them we indicate the followings: Bushings and washers at customer request measures Counter - roller bushings with the sliding surface on the outside diameter Special items at customer's drawing. 		
Design Data:	cases have shown that short periods. Long se	The depend mainly from the load factor I a working load factor of 2.5 to 3,6 (N/rvice life are suited with load factors robust). I to 0.9 (N/mm ² \cdot m/s) for alternating	$mm^2 \cdot m/s$) is admissible for anging from 0.2 to 1.8 for

Friction:	\underline{TU} friction factor principally depends from the specific load, the sliding speed and from the working temperature; very important it is also the material and the counter piece			
	superficial degree of finishing.	important it is also the mater	ial and the counter piece	
	Sliding Speed V (m/s)	Specific Load P (N/mm ²	Friction Factor	
	up to 0,001	140	0,03	
	from 0,001 to 0,005	from 140 to 62	from 0,04 to 0,07	
	from 0,005 to 0,05	from 62 to 11	from 0,07 to 0,1	
	from 0,05 to 0,5	from 11 to 1	from 0,1 to 0,15	
	from 0,5 to 2,5	1	from 0,15 to 0,20	
Wear:	During operation the <u>TU</u> bushing shows a first running - in phase when some of PT compound transfers on counter piece which normally is of steel alloy. Other counter pieces of stainless steel, chrome plated steel and hard anodised aluminium can imp <u>TU</u> service life. As counter piece have to be avoided bronze, aluminium, phosphati nickel plated steel to optimise <u>TU</u> durability surface roughness must not exceed 0.4 Where possible <u>TU</u> bushing preliminary tests have to be carried out to make sure a influencing factors of each application; our technical department is willing to supplie additional information and data request.			
Mounting:	 Clean and burr the pie Lubricate external bus Check alignment betw When 2 bushing are not use a proper sized mature 	lead - in with an angle of 20° ces to couple hing surface before mountin reen seat and bushing centre eeded their junctions must be ndrel when possible.	g lines e aligned al tools.	
	Bushing Nominal Thickness 0,	50 ÷ 1,00 mm F =	= 300 x L (Length of bush)	
	Bushing Nominal Thickness 0, Bushing Nominal Thickness 1,	,	300 x L (Length of bush) 500 x L (Length of bush)	
		$00 \div 1,50 \text{ mm}$ F =		

adhesive are used and that it does not get onto the sliding surface.

Note: Information present in this sheet is considered reliable, but conditions and methods of use, which are beyond our control, may modify result. The information and data contained in this data sheet are the result of lengthy and detailed research, however TECH-i Inc cannot be held responsible for any incorrect or incomplete data. Owing to the constant development of the products, we reserves the right to make changes to the products without prior notice.

TU-316 Self Lubricated Sliding Bearings

Description:	and are a three layer co • PTFE Modifi- lead, complyi • Porous bronze	ed antifriction surface layer $0,01 \div 0$ ng with the European Parliament's " e layer $0,20\div 0,35$ mm thickness eel supporting strip $0,70$ to $2,20$ mm	,05 mm thickness (Without ELV" directive 2000/53/Ec).
	Structure of the com		
	Layer	Average analyses of the material	Thickness of layer
annos das Tibu accessos	Sliding layer	PTFE Modified	10 µm (Minimum)
	Intermediate layer	CuSn11 Sintered	$200 \div 350 \ \mu m$ (Average Peak)
	Connecting layer	Cu	Depending of wall thickness
- A main	Supporting shell	AISI 316 L Stainless Steel (1.4404) C = 0.030 % Max Mn = 2.00 % Max P = 0.045 % Max S = 0.030 % Max Si= 1 % Max Cr= 16.5 - 18.5 % Ni= 10.00-13.00 % Mo= 2.0 % Max	0,70 ÷ 2,20 mm (Depending on Dim. of the Bearing)
Characteristics:	TU-316structure combines in the best way the mechanical strength of the steel, the bronze thermal conductivity and PTFE low friction. The performance given without lubricants are the following:• Working surface acceptable specific static pressure: Max 250 N/mm²• Working surface acceptable specific dynamic pressure: Max 140 N/mm²• Maximum sliding speed (dry): 2,5 m/s• Maximum sliding speed (oil): 10 m/s• Working temperature from: -200 to +280° C• Friction factor from 0,03 to 0,20• Clear fluids like oil or water permit higher values for speed and specific pressu• Friction factor not affected by "stick - slip" effect• High chemical resistance to industrial fluids and gases.• High resistance to corrosion		erformance given without e: Max 250 N/mm ² ssure: Max 140 N/mm ² (500 fpm) (2000 fpm) (-328°F to +536°F) for speed and specific pressure
Special Items:	supplied as many other Bushings and Counter - roll	ngs ISO 3547 (DIN 1494) and thrus r technical items, between them we i washers at customer request measur er bushings with the sliding surface at customer's drawing.	ndicate the followings: res
Design Data:	Practical cases have sh admissible for short pe	the life depend mainly from the load f sown that a working load factor of 2. wriods. Long service life are suited w us loads and 0.1 to 0.9 (N/mm ² x m/	5 to 3.6 (N/mm ² x m/s) is ith load factors ranging from

Friction:		cipally depends from the spec erature; very important it is al gree of finishing.	
	Sliding Speed V (m/s)	Specific Load P (N/mm ²)	Friction Factor
	up to 0,001	140	0,03
	from 0,001 to 0,005	from 140 to 62	from 0,04 to 0,07
	from 0,005 to 0,05	from 62 to 11	from 0,07 to 0,1
	from 0,05 to 0,5		
	from 0,5 to 2,5	1	from 0,15 to 0,20
Wear:	PTFE compound transfers of counter pieces of stainless simprove <u>TU-316</u> service life phosphatized and nickel pla must not exceed 0.4 um. Wh carried out to make sure abo	During operation the <u>TU-316</u> bushing shows a first running - in phase when some PTFE compound transfers on counter piece which normally is of steel alloy. Othe counter pieces of stainless steel, chrome plated steel and hard anodised aluminium improve <u>TU-316</u> service life. As counter piece have to be avoided bronze, alumin phosphatized and nickel plated steel to optimise <u>TU-316</u> durability surface rough must not exceed 0.4 um. Where possible <u>TU-316</u> bushing preliminary tests have t carried out to make sure about the influencing factors of each application; our tech department is willing to supply additional information and data request.	
Mounting:	suggestion to follow: Machine a 1 mm se Clean and burr the Lubricate external Check alignment b When 2 bushing ar Use a proper sized Mounting can be d	bushing surface before mount etween seat and bushing centre e needed their junctions must mandrel when possible. one with hydraulic or mechar Newton is shown in the attach $s 0,50 \div 1,00 \text{ mm}$ $F =$ $s 1,00 \div 1,50 \text{ mm}$ $F =$ $s 1,50 \div 2,00 \text{ mm}$ $F =$	20° (±5°) ting re lines be aligned tical tools.
	bush. The tool diameter sho If the bush is secured by usi	es it is advisable to use a mou uld be $0,3 \div 0,4$ mm more tha ng an adhesive, care must be id that it does not get onto the	n the bush diameter. taken to ensure that good

TU-625 Self Lubricated Sliding Bearings

Description:	 PTFE Modificon complying w Porous bronz 	Bearings is a three layer composite pro- ted antifriction surface layer $0,01 \div 0,04$ ith the European Parliament's "ELV" d re layer $0,05 \div 0,10$ mm thickness. from $0,50$ to $2,70$ mm thick depending posite material:	mm thick (without lead, lirective 2000/53/Ec).
	Layer	Average analyses of the material	Thickness of layer
	Sliding layer	PTFE Modified	$40 \div 80 \ \mu m$ (Colour Black or Green)
	Intermediate layer	Bronze Cu 86÷96% Sn 3÷11% Other <2%	50 ÷ 100 μm
	Supporting shell	Inconel-625 C = 0,10 % Max Mn = 0,05 % Max Cr = 20 - 23 % Ni = Rest Mo = 8 - 10 % Cobalt = 1 % Max Tentalum + Niobium = 3,15 - 4,15 %	0,25 ÷ 2,70 mm (Depending on Dim. of the Bearing)
Characteristics:	Cobalt = 1 % Max Tentalum + Niobium = 3,15 - 4,15 % <u>TU-625</u> structure combines in the best way the mechanical strength of steel, broconductivity and PTFE low coefficient of friction. The performance given without lubricants are the following: Working surface acceptable specific static pressure: Max 250 N/mm² Working surface acceptable specific dynamic pressure: Max 140 N/mm Working surface acceptable specific alternative pressure: Max 60 N/mr Maximum sliding speed (dry): 2,5 m/s (500 fpm) Maximum Load Factor (PxV): 1,8 N/mm² · m/s 		rmance given without Max 250 N/mm ² ure: Max 140 N/mm ² ssure: Max 60 N/mm ² (500 fpm) (-310°F to +536°F) or speed and specific pressure ses. (The sliding layer can resist monium and sodium, the material are solvent and
Special Items:	as many other technic Bushings and Counter - rol	SO 3547 (DIN 1494) and thrust washe al items, between them we indicate the l washers with dimensions on request ler bushings with the sliding surface on based on customer's drawing.	followings:

	<u>$TU-625$</u> friction factor principally depends from the specific load, the sliding speed and from the working temperature; also very important is counter piece material superficial				
	degree of finishing. Sliding Speed V (m/s)	Specific Load P (N/mm ²)	Friction Factor		
	$\frac{1}{1}$ up to 0,001	140	0,03		
	from 0,001 to 0,005	from 140 to 62	from 0,04 to 0,07		
	from 0,005 to 0,05	from 62 to 11	from 0,07 to 0,1		
	from 0,05 to 0,5	from 11 to 1	from 0,1 to 0,15		
	from 0,5 to 2,5	1	from 0,15 to 0,20		
		1	110111 0,15 to 0,20		
Wear:		oushing shows a first running - in counter piece which normally is o			
	1	l, chrome plated steel and hard a	•		
		As counter piece have to be avoid			
		steel to optimise <u><i>TU-625</i></u> durabi			
	must not exceed 0.4 um. Where possible <u><i>TU-625</i></u> bushing preliminary tests have to be carried out to make sure about the influencing factors of each application; our technical				
		additional information and data			
Mounting:	Base procedure for bushings mounting is to force them into their seats; there are some				
	suggestion to follow:				
	• Machine a 1 mm seat lead - in with an angle of $20^{\circ} (\pm 5^{\circ})$				
	• Clean and burr the pieces to couple				
	Lubricate external bushing surface before mounting				
		 Check alignment between seat and bushing centre lines 			
	• When 2 bushing are n	eeded their junctions must be ali			
	When 2 bushing are nUse a proper sized ma	eeded their junctions must be ali andrel when possible.	gned		
	When 2 bushing are nUse a proper sized maMounting can be done	eeded their junctions must be ali andrel when possible. with hydraulic or mechanical to	gned ols.		
	When 2 bushing are nUse a proper sized maMounting can be done	eeded their junctions must be ali andrel when possible.	gned ols.		
	 When 2 bushing are n Use a proper sized ma Mounting can be done The mounting force (F) in New 	eeded their junctions must be ali andrel when possible. e with hydraulic or mechanical to vton is shown in the attached tab	gned ools. Je.		
	 When 2 bushing are n Use a proper sized ma Mounting can be done The mounting force (F) in New Bushing Nominal Thickness 0, 	eeded their junctions must be ali andrel when possible. with hydraulic or mechanical to vton is shown in the attached table $50 \div 1,00 \text{ mm}$ F = 30	gned ols. e. O x L (Length of bush)		
	 When 2 bushing are n Use a proper sized ma Mounting can be done The mounting force (F) in New 	eeded their junctions must be ali andrel when possible.e with hydraulic or mechanical to vton is shown in the attached table $50 \div 1,00 \text{ mm}$ $F = 300$ $00 \div 1,50 \text{ mm}$ $F = 500$	gned ools. Je.		

TU-B Self Lubricated Sliding Bearings

Description:	and are a three layer of PTFE Modified, comply Porous bron Bronze supp bush. Structure of the com Layer	fied antifriction surface layer 0,01÷0 ving with the European Parliament's ze layer 0,20÷0,35 mm thickness. porting strip 0,50 to 2,70 mm thickne posite material: Average analyses of the material	,05 mm thickness (Without "ELV" directive 2000/53/Ec).
	Sliding layer Intermediate layer Supporting shell	PTFE Modified CuSn11 Sintered CuSn8 / CuSn6 Bronze (CuSn8P) Cu = Rest	$\begin{array}{c} 10 \ \mu m \ (Minimum) \\ \hline 200 \div 350 \ \mu m \ (Average \ Peak) \\ \hline 0,50 \div 2,70 \ mm \\ (Depending \ on \ Dim. \ of \ the \ Bearing) \end{array}$
		Sn = 7,5 / 8,5 Max P = 0,40 Max	
Characteristics:	 <u>TU-B</u> structure combines in the best way the mechanical strength of the steel, the bronze thermal conductivity and PTFE low friction. The performance given without lubricants are the following: Working surface acceptable specific static pressure: Max 250 N/mm² Working surface acceptable specific dynamic pressure: Max 140 N/mm² Maximum sliding speed (dry): 2,5 m/s (500 fpm) Maximum sliding speed (oil): 10 m/s (2000 fpm) Working temperature from: -200 to +280° C (-328°F to +536°F) Friction factor from 0,03 to 0,20 Clear fluids like oil or water permit higher values for speed and specific pressure Friction factor not affected by "stick - slip" effect High chemical resistance to industrial fluids and gases. 		
Special Items:	supplied as many oth Bushings an Counter - ro	ISO 3547 (DIN 1494) and thrust wa er technical items, between them we d washers at customer request measu ller bushings with the sliding surface s at customer's drawing.	indicate the followings: ares
Design Data:	Practical cases have s admissible for short p	e life depend mainly from the load fa shown that a working load factor of 2 periods. Long service life are suited y ous loads and 0.1 to 0.9 (N/mm ² x m	2.5 to 3.6 (N/mm ² x m/s) is with load factors ranging from

		<u>TU-B</u> friction factor principally depends from the specific load, the sliding speed and				
	from the working temperature; very important it is also the material and the counter					
		piece superficial degree of finishing.				
	Sliding Speed V (m/s)	Specific Load P (N/mm	· · · · · · · · · · · · · · · · · · ·			
	up to 0,001	140	0,03			
	from 0,001 to 0,005	from 140 to 62	from 0,04 to 0,07			
	from 0,005 to 0,05	from 62 to 11	from 0,07 to 0,1			
	from 0,05 to 0,5	from 11 to 1	from 0,1 to 0,15			
	from 0,5 to 2,5 1 from 0,15 t					
Wear:	During operation the <u><i>TU-B</i></u> bushing shows a first running - in phase when some of PTFE compound transfers on counter piece which normally is of steel alloy. Other counter pieces of stainless steel, chrome plated steel and hard anodised aluminium car improve <u><i>TU-B</i></u> service life. As counter piece have to be avoided bronze, aluminium, phosphatized and nickel plated steel to optimise <u><i>TU-B</i></u> durability surface roughness must not exceed 0.4 um. Where possible <u><i>TU-B</i></u> bushing preliminary tests have to be carried out to make sure about the influencing factors of each application; our technical department is willing to supply additional information and data request. The base structure made of CuSn8 makes the bearings suitable for corrosive applications.					
Mounting:	 Base procedure for bushings mounting is to force them into their seats; there are same suggestion to follow: Machine a 1 mm seat lead - in with an angle of 20° (±5°) Clean and burr the pieces to couple Lubricate external bushing surface before mounting Check alignment between seat and bushing centre lines When 2 bushing are needed their junctions must be aligned Use a proper sized mandrel when possible. Mounting can be done with hydraulic or mechanical tools. The mounting force (F) in Newton is shown in the attached table. 					
	 Machine a 1 mm set Clean and burr the p Lubricate external b Check alignment be When 2 bushing are Use a proper sized n Mounting can be do The mounting force (F) in N 	pieces to couple bushing surface before mount etween seat and bushing cern e needed their junctions must mandrel when possible. one with hydraulic or mecha ewton is shown in the attac	20° (±5°) nting ntre lines st be aligned nnical tools. hed table.			
	 Machine a 1 mm set Clean and burr the p Lubricate external b Check alignment be When 2 bushing are Use a proper sized n Mounting can be do The mounting force (F) in N Bushing Nominal Thickness 	pieces to couple bushing surface before mount etween seat and bushing cern e needed their junctions must mandrel when possible. One with hydraulic or mecha ewton is shown in the attact $0,50 \div 1,00 \text{ mm}$ F =	20° (±5°) nting ntre lines st be aligned unical tools. hed table. = 300 x L (Length of bush)			
B .	 Machine a 1 mm set Clean and burr the p Lubricate external b Check alignment be When 2 bushing are Use a proper sized n Mounting can be do The mounting force (F) in N 	pieces to couple bushing surface before mount etween seat and bushing cern e needed their junctions must mandrel when possible. one with hydraulic or mecha ewton is shown in the attact $0,50 \div 1,00 \text{ mm}$ F = $1,00 \div 1,50 \text{ mm}$ F =	20° (±5°) nting ntre lines st be aligned nnical tools. hed table.			

TVM Self Lubricated Sliding Bearings

Description:	 <u>TVM</u> identifies an entire sliding bearing family constituted from a complex fibre-winding technique. The highstrength backing consists of glass fibres and the sliding surface is made of PTFE and polymer fibres. Both layers are embedded in an epoxy resin matrix. This material selection combines the special mechanical properties of glass fibres with the outstanding tribological properties of PTFE and the high-strength polymer fibres. <u>TVM</u> benefits are for extreme operating conditions, most plain bearings need premature maintenance or replacement, <u>TVM</u> bushing are typically still operational. Excellent sliding property; High load carrying capacity; Long service life; Maintenance-free; Insensitivity to edge loading and misalignment; Good impact resistance; Good noise and vibration damping; Excellent resistance to corrosive media, even to salt water, and many chemicals; Good insulator preventing passage of eletric current. 				
Characteristics:					
Properties:		Value	Unit		
•	Maximum Specific Load Static	250	N/mm²	(36260 psi)	
	Maximum Specific Load Dynamic	140	N/mm²	(20300 psi)	
	Maximum Sliding Speed	0,10	m/s	(20 fpm)	
	Maximum PxV Factor	1,05	$N/mm^2 \cdot m/s$		
	Maximum PxV Factor (short period)	1,50	$N/mm^2 \cdot m/s$		
	Break Straw	400	N/mm ²		
	Max Moisture Absorption (23°C)	ASTM D570	0,35 %		
	Maximum Temperature	+150	°C	(+302°F)	
	Minimum Temperature	-50	°C	(-58°F)	
	Shaft Finish Ra (Advised)	0,2÷0,8 Ra	μm	(
	Shaft Hardness (Advised)	>350	HB		
Operating Conditions:	Dry ***				
	Oil ****			***** = Excellent	
	Grease ****			*** = Good	
	Water *			* = Fair	
	Process Fluid *				
Dimensions:	The dimensions of <u><i>TVM</i></u> bushing correspond to ISO 4379 (1993). This provides full interchangeability with other bushings, e.g. bronze bushings. The tolerances after fitting into housing bore with H7 tolerance, will be within D11.				
Mounting:	 Base procedure for bushings mounting is to force them into their seats; there are same suggestion to follow: Machine a 1 mm seat lead - in with an angle of 20° (±5°) Check alignment between seat and bushing centre lines Use a proper sized mandrel when possible. Mounting can be done with hydraulic or mechanical tools. We suggest to lubricate the internal surface just in start-up fazes. 				

TX Pre-Lubricated Sliding Bearings

Description:	Multilayer bushing (Pre-Lubricated Sliding Bearings)				
	<u>TX</u> bearings are Pre-lubricated material and are a three layer composite product.				
	• Pom-C layer 0	$0,25 \div 0,50 \text{ mm thickness}$			
	 Porous bronze 	layer $0,20 \div 0,35$ mm thickness			
	 Low carbon st 	eel supporting strip 0,50 to 2,70 mm th	ick depending on the size of the		
	bush. The stee	I is plated for corrosion protection (Tin	or Zinc 2÷8 µm).		
MART -	Structure of the comp	Structure of the composite material:			
	Layer	Average analyses of the material	Thickness of layer		
	Sliding layer	Pom-C (DIN 7728)	$250 \div 450 \ \mu m$ (Average Peak)		
	Intermediate layer	CuSn10 Sintered	$200 \div 350 \ \mu m (Average Peak)$		
	Connecting layer	Cu	$1 \div 3 \ \mu m$		
	Supporting shell	Low Carbon Steel (EN 10139) C = 0,080 Max Mn = 0,40 Max P = 0,03 Max S = 0,03 Max	0,50 ÷ 2,70 mm (Depending on Dim. of the Bearing)		
	Protective Layer	Sn or Zn	2 ÷ 8 μm		
	the upper acetal co-polymer sliding layer and to facilitate heat dissipation. The polymeric surface is indented so that the lubricating grease is collected and released gradually to minimize friction and protect the mating surface. The <u><i>TX</i></u> range of products includes bushes, thrust washers and strips both in metric and imperial sizes. Furthermore, <u><i>TX</i></u> bearings can be supplied, on request, in metric or imperial sizes. <u><i>TX</i></u> is supplied in the pre-finished version, ready for use.				
Characteristics:	 <u>TX</u> structure combines in the best way the mechanical strength of the steel, the bronze thermal conductivity and POM-grease low friction. The performance are the following: Working surface acceptable specific static pressure max 140 N/mm² Working surface acceptable specific dynamic pressure max 70 N/mm² Maximum sliding speed with grease: 2,5 m/s (500fpm) Working temperature from: -40°C to +130° C (-40°F to +266°F) <u>TX</u> is produced in coils of various thicknesses from which the sliding bearings such as bushes, thrust washers, strips and special parts for lubricated applications are manufactured. <u>TX</u> bearings can be used in a wide range of applications, from civil and industrial vehicles to machine tools and wherever there are articulated joints that require minimum periodic lubrication. The lubricant guarantees very low coefficients of friction and consequently, a reduced amount of wear with an anti-corrosive protection of the mechanical parts. Use of the <u>TX</u> bearings is continuing to expand because of a need both to overcome problems of wear between two metal mating surfaces and to reduce costs by substituting rolling bearings wherever possible. <u>TX</u> provides an answer to these requirements while offering greater compactness and ease of fitting at the same time. Lubrication is always necessary and if grease is used, it is essential to establish beforehand whether the grease will be applied only initially or if regular maintenance operations will be 				
Special Items:	Apart from bushings ar items, between them w Bushings and Counter - rolle	ails concerning maintenance are provid ad thrust washers the \underline{TX} can be supplied e indicate the followings: washers at customer request measures er bushings with the sliding surface on t at customer's drawing.	d as many other technical		

Performance:	The load capacity of <u><i>TX</i></u> bearings is expressed by the load factor $p \ge v (N/mm^2 \le m/s)$ where p is the specific load and v is the speed. The maximum value of the specific load that can be applied under static and ideal conditions is 140 x N/mm ² . For the bushes, the internal semi- surface, which is given by the result of the internal diameter multiplied by the length Di x L, must be considered. The value of the specific load is reduced to 130 N/mm ² under dynamic				
	conditions (with grease lubrication) Higher temperatures reduce the load factor by 20% at 50°C, by 50% at 70°C and by 80% at 100°C. The performance of the bearings in the <u><i>TX</i></u> range is improved with grease lubrication that allows for P x V factors of up to 5 (N/mm ² x m/s) with maximum speed of 2.5 m/s. The <u><i>TX</i></u> series of bearings can be used without maintenance and with just a first initial greasing. However, where possible, re-greasing should be carried out to increase the				
	The outside of the bearings is protected with a Tin Plating.				
Friction:	The particular characteristic of the acetal co-polymer sliding lining of \underline{TX} bearings is that it				
	creates a pseudo-binding with the lubricants to form an excellent and very long-lasting				
	sliding surface. Apart from the considerations referred to above, the dynamic coefficient of				
	friction under lubricated operating conditions is greatly influenced, both positively and negatively, by the same factors that determine the operating life of the bearing. With a grease				
	based lubrication, the coefficient of friction varies between the values of 0.05 - 0.012. The				
	lowest values are reached with a high specific load. Oil lubrication further reduces friction				
	and at high speeds hydrodynamic lubrication is attained that lowers the coefficient of friction				
	to values close to 0.002 . For <u><i>TX</i></u> bearings, the static coefficient of friction is not much				
	higher than the dynamic one and therefore, the annoying "stick-slip" phenomenon, i.e. the				
	sticking of the bearing when still, does not occur.				
Wear:	The wear rate of <u><i>TX</i></u> bearings for greased applications is difficult to calculate in advance				
	owing to other factors that must be taken into consideration apart from the temperature, such				
	as the roughness of the mating surface, the alignment of the mating, the presence of pollutant				
	in the lubricant and other elements.				
	The operating life is also affected by the way in which the load is applied. With an equal				
	specific load, the operating life is longer if the application has a rotating load, while it is				
	shorter (-30% approximately) with a unidirectional load, while thrust washers have the				
	shortest operating life (-50% approximately). The amount of wear on \underline{TX} bearings is very small especially for specific loads from 10 to 20				
	N/mm^2 . Even for loads of up to 120 N/mm ² , the amount of wear remains low as long as the				
	lubricant is well-distributed, but the amount of wear increases enormously as soon as the				
	lubricant runs dry. The bearing must be regreased before wear begins due to a lack of				
	lubricant and, generally, the amount of wear between one lubrication and the next should not				
	exceed 0,0025 mm. When the amount of wear reaches 0,15 mm., the bearing is normally				
	considered to have exceeded its operating life				
Mounting:	Base procedure for bushings mounting is to force them into their seats; there are same				
	suggestion to follow:				
	• Machine a 1 mm seat lead - in with an angle of 20° (±5°)				
	Clean and burr the pieces to couple				
	Lubricate external bushing surface before mounting				
	 Check alignment between seat and bushing centre lines 				
	• When 2 bushing are needed their junctions must be aligned				
	• Use a proper sized mandrel when possible.				
	• Mounting can be done with hydraulic or mechanical tools.				
	The manufactor (\mathbf{r}) is Manufactor is chosen in the $(t-1, 1, t+1)$				
	The mounting force (F) in Newton is shown in the attached table.				
	Bushing Nominal Thickness $0,50 \div 1,00 \text{ mm}$ F = 300 x L (Length of bush)Bushing Nominal Thickness $1,00 \div 1,50 \text{ mm}$ F = 500 x L (Length of bush)				
	Bushing Nominal Thickness 1,50 \div 2,00 mmF = 700 x L (Length of bush)F = 700 x L (Length of bush)				
	Bushing Nominal Thickness $2,00 \div 2,50 \text{ mm}$ F = 900 x L (Length of bush)				
	When mounting larger hughes it is a brigghts to use a mounting to 1 to mount the 1 - 1. The				
	When mounting larger bushes it is advisable to use a mounting tool to support the bush. The				
	tool diameter should be $0,3 \div 0,4$ mm more than the bush diameter.				
	If the bush is secured by using an adhesive, care must be taken to ensure that good quality adhesive are used and that it does not get onto the sliding surface.				
	adhesive are used and that it does not get onto the sliding surface.				